

Cooking 👚 🚢

represents one of the single largest contributors, generating particulate matter (PM2.5) at concentrations **four** times greater than major haze events in Beijing.

Source: The Kitchen as a pollution hazard, NY Times

A01 AIR QUALITY P

lssue

Exposure to air pollutants, such as Volatile Organic Compounds (VOCs), ozone, particulate matter, carbon monoxide and others has been shown to increase the risk of respiratory and cardiovascular diseases, in addition to causing thousands of cancer deaths annually.

Intent

Provide a basic level of indoor air quality that contributes to the health and well-being of building users

Summary

This WELL feature requires projects to provide acceptable air quality levels, as determined by public health authorities.

27

A01 AIR QUALITY

Solutions

- WHO & EPA list of "criteria" air pollutants with established permissible levels pollutants, duration of exposure and health risks.
- Source control strategies
- Passive and active building design and operation strategies
- Human behavior interventions.
- Effective mechanical ventilation

<u>a</u>2

A01 AIR QUALITY	PART 3: Meet Thresholds for Inorganic Gases
For All Spaces except Commercial Kitchen Spaces	es & Industrial:
Occupiable spaces Carbon monoxide: 10 mg/m³ [9 ppm] or lowe Ozone: 100 μg/m³ [51 ppb] or lower.	ver.
For Commercial Kitchen Spaces & Industrial Carbon monoxide: 34 mg/m ³ [30 ppm] or low	ower.
• Ozone: 100 µg/m [51 ppb] or lower.	

A01	AIR	QUALII	Y PART	5: Monitor	Air Paramete	ers	
For All Space	s except Dv	velling Units					
 The pollu occupied WELL dig 	utants listed I spaces at i gital platfor	d in Parts 1-3 (PM, Or intervals no longe m.	ganic gases and I r than once p	norganic gases) o Der year , and t	of this feature are the results are su	e monitored in re bmitted annua	gularly //y through the
 The num 	ber and loc	cation of sampling po	ints for on-going	monitoring comp	olies with Perforn	nance Verificatio	n Guidebook

AIR Y ? N Y Y Y Y Y Y Y Y Y	Weight Required Required Required Required Required Required Required Required 2 points	© A01.1 A01.2 A01.3 A01.4 A01.5 A02.1 A02.2 A03.1 A04.1 A05.1	PartName Meet Thresholds for Particulate Matter Meet Thresholds for Organic Gases Meet Thresholds for Inorganic Gases Meet Thresholds for Radon Monitor Air Parameters Prohibit Indoor Smoking Prohibit Outdoor Smoking Ensure Adequate Ventilation Mitigate Construction Pollution Meet Enhanced Thresholds for Particulate Matter	
	1 point 1 point 2 points 1 point	A05.2 A05.3 A06.1 A06.2	Meet Enhanced Thresholds for Organic Gases Meet Enhanced Thresholds for Inorganic Gases Increase Outdoor Air Supply (30% 1pt) Improve Ventilation Effectiveness	WELL SCORE CARD
	1 point 1 point 1 point 1 point	A07.1 A07.2 A08.1 A08.2	Provide Operable Windows Provide Operable Windows Install Indoor Air Monitors Promote Air Quality Awareness	
	1 point 1 point 1 point	A09.1 A09.2 A10.1	Design Healthy Entryways Perform Envelope Commissioning Manage Combustion	
	1 point 1 point 1 point	A11.1 A12.1 A13.1	Manage Pollution and Exhaust Implement Particle Filtration Improve Supply Air	

A01	AIR QUALITY P		
	PART 1: Meet Thresholds for Particulate Matter PM 2.5 PM 10	Performance Test, Technical Document	
	PART 2: Meet Thresholds for Organic Gases Benzene Formaldehyde Toluene	Performance Test, Technical Document	
	PART 3: Meet Thresholds for Inorganic Gases Carbon monoxide Ozone	Performance Test	
	PART 4: Meet Thresholds for Radon	Technical Document, Letter of Assurance by Engineer	
	PART 5: Monitor Air Parameters	On-going Data Report	

A02 SMOKE FREE ENVIRONMENT

lssue

Exposure to tobacco smoke has continued to detrimentally affect the health of both smokers and those exposed to secondhand smoke. Average life expectancy of a smoker is **10 years less** than that of a nonsmoker.

Intent

Deter smoking, minimize occupant exposure to secondhand smoke and reduce smoke pollution

Summary

This WELL feature requires projects to ban indoor smoking and ban or restrict outdoor smoking within its boundaries.

P

A02 SMOKE FREE ENVIRONMENT

Solution

- Implement a 100% smoke-free environment
 projects must also take steps to ensure that smoking
 - is not allowed in the vicinity of:
 - building entrances
 - operable windows
 - building air intakes

A02	SMOKE FREE ENVIR	RONMENT P	
		VERIFICATION METHOD	
	PART 1: Prohibit Indoor Smoking	Policy and/or Operations Schedule	
	PART 2: Prohibit Outdoor Smoking	On-site Photographs, Letter of Assurance by Owner	

A03 VENTILATION DESIGN

PART 1: Ensure Adequate Ventilation

- o Option 2: Naturally ventilated spaces
- One or more of the following design criteria, which must describe ventilation rates for at least 90% of the project area:
 - 1. Natural Ventilation Procedure in ASHRAE 62.1-2010 or any more recent version
 - 2. CIBSE AM10: Natural Ventilation in Non-Domestic Buildings
 - 3. AS 1668.4-2012 or any more recent version
 - 4. Any reference in Option 1, which describes natural ventilation procedures
- Vents and windows used to meet the ventilation requirements in one of the standards mentioned above are permanently open or have controls to prevent their closure during periods of occupancy.
- Outdoor air meets the following thresholds as an average for the previous year:
 - 1. PM less than $15 \,\mu\text{g/m}^3$
 - 2. PM less than 30 µg/m³

A03 VENTILATION DESIGN

PART 1: Ensure Adequate Ventilation	VERIFICATION METHOD
Option 1: Mechanically ventilated spaces	Letter of Assurance by Engineer
Option 2: Naturally ventilated spaces	
Option 3: Naturally ventilated spaces in areas with	Letter of Assurance by Engineer, Technical Document
elevated particulate matter	

A04 CONSTRUCTION POLLUTION MANAGEMENT

Solution

 Air duct protection, moisture and dust management, filter replacement and proper equipment selection are strategies that improve indoor air quality, by limiting the exposure to an intense contamination period.

Ρ

Ð

53

A04 CONSTRUCTION POLLUTION MANAGEMENT

PART 1: Mitigate Construction Pollution

- Ducts are sealed and protected from possible contamination during construction.
- Ducts are cleaned prior to installing registers, grills and diffusers.
- Media filters with a PM10 removal rating of at least 70% (e.g., MERV 8) are used to filter return air.
- All filters are replaced **prior to occupancy**.
- Carpets, acoustical ceiling panels, fabric wall coverings, insulation, upholstery and furnishings and other absorptive materials are stored separately in a designated area protected from moisture damage.
- All active areas of work are isolated from other spaces by sealed doorways or windows or through the use of temporary barriers.
- Walk-off mats are used at entryways to reduce the transfer of dirt and pollutants.
- Saws and similar tools use **dust guards** or collectors to capture generated dust.

A04 CONSTRUCTION POLLUTION MANAGEMENT

PART	1:	Mitigate Construction Pollution

VERIFICATION METHOD

-

D

Letter of Assurance by Contractor

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

LL Certification	2 Pt WELL Core: 2 Pt	
All Spaces:		
following req	uirement is met:	
a. Projects con	nply with the thresholds specified in the table below:	
	Particulate Matter Thresholds	Points
	PM _{2.5} : 12 µg/m ³ or lower. ⁸	1
	PM ₁₀ 30 µg/m ³ or lower. ⁹	
	10. 1 5	
	PM _{2.5:} 10 µg/m ³ or lower. ⁹	2

ACS ENHANCED AIR QUALITY Part 3 Meet Enhanced Thresholds for Inorganic Gases WELL Certification: 1 Pt | WELL Core: 1 Pt For All Spaces: The following thresholds are met: a. Carbon monoxide: 7 mg/m³ [6 ppm] or lower.¹¹ b. Nitrogen dioxide: 40 µg/m³ [21 ppb] or lower.¹¹ WELL Core Guidance: Meet these requirements in the whole building. Achievement requires access to at least 10% of leased space for testing as identified by the project.

A05 ENHANCED AIR QUALITY					
		VERIFICATION METHOD			
	PART 1: Meet Enhanced Thresholds for Particulate Matter				
	PART 2: Meet Enhanced Thresholds for Organic Gases	Performance Test			
	PART 3: Meet Thresholds for Inorganic Gases				
			I		

A06 ENHANCED VENTILATION DESIGN

lssue

- Even with proper ventilation designed to meet ventilation standards, the concentration of indoor pollutants can exceed concentrations found in outdoor air.
- Ventilation rates less than 21 cfm(10 L/s) per person in all building types are associated with negative perception of air quality

Intent

Expel internally generated pollutants and improve air quality in the breathing zone through an increased supply of outdoor air or increased ventilation efficiency

Summary

This WELL feature requires implementation of advanced ventilation strategies that can achieve higher air quality levels and thus benefit human health and productivity.

63

A06 ENHANCED VENTILATION DESIGN

Solution

- Airflow rate significantly exceeding is needed to minimize sick building syndrome symptoms and to improve human performance and productivity. pollutants. CO2 concentrations < than 800 ppm.
- Displacement ventilation improves indoor air quality, by:
 - delivering fresh outdoor air at the floor level,
 leaving warmer polluted indoor air, such as CO to be extracted above the height of the ventilation zone

Optio	n 2: Demand control	ventilation			
For m	echanically ventilated	projects, the following re	equirements are met in at least 90% of regularly o	ccupied spaces:	
a. /	A demand-controlled than the thresholds sp	ventilation (DCV) system becified in the table below	regulates the outdoor air ventilation rate to keep , at the maximum intended occupancy:	CO ₂ levels less	
	Threshold	Threshold	Points		
	900 ppm	OR	500 ppm above outdoor levels	1(2)	
	750 ppm	OR	350 ppm above outdoor levels	2(3)	
b. (Carbon dioxide is mea	sured at the return air dif	fusers or in the breathing zone at least 3.3 ft(1 m)	away from	
	doors, windows, air supply diffusers or occupants. At least one sensor is used for each occupancy zone (or per				

A06 ENHANCED VENTILATION DESIGN Part 2 Improve Ventilation Effectiveness WELL Certification: 1 Pt | WELL Core: 2 Pt For All Spaces: Option 1: Displacement ventilation system The project uses a displacement ventilation system in at least 90% of regularly occupied spaces, with one of the following as a basis for design: a. ASHRAE Guidelines RP-949.9 b. ASHRAE 62.1-2019, "Stratified Air Distribution Systems (Section 6.2.1.2.1).¹⁰ c. REHVA Guidebook No. 01 (Displacement Ventilation in non-industrial premises).¹¹ OR------Option 2: Personalized ventilation system For at least 50% of workstations, the following requirements are met: a. Outdoor air is supplied in the breathing zone, with an airspeed of no greater than 50 fpm(0.25 m/s) at the occupant's head.¹⁰ b. The return air diffusers are located more than 9.8 ft(2.8 m) above the floor.¹⁰ WELL Core Guidance: Meet these requirements in the whole building.

ΕN	HANCED VENTILATIO	n design
		VERIFICATION METHOD
PAR	T 1: Increase Outdoor Air Supply	
	Option 1: Increased air supply	Letter of Assurance by
	Option 2: Demand control ventilation	Engineer
	Option 3: Enhanced natural ventilation	Technical Document
PAR	T 2: Improve Ventilation Effectiveness	
	Option 1: Displacement ventilation system	Letter of Assurance by
	Option 2: Personalized ventilation system	Engineer

A07 OPERABLE WINDOWS

lssue

- Inhalation of harmful indoor substances is correlated with adverse health outcomes.
- it is challenging to the ability to maintain strict control over interior air quality.

Intent

Increase the supply of high-quality outdoor air and promote a connection to the outdoor environment, by encouraging building users to open windows when outdoor air quality is acceptable.

Summary

This WELL feature requires buildings with operable windows to increase the supply of high-quality outdoor air and promote a connection to the outdoor environment.

A07 OPERABLE WINDOWS

Solution

- When weather and local outdoor parameters indicate high-quality outdoor air, people should be encouraged to make use of natural ventilation strategies.
- ventilating through windows generally introduces more outdoor pollution than mechanical systems with filters.
- Educating and informing building users when outdoor conditions are favorable for window opening, can reduce the generation and persistence of indoor air pollutants.

A08 AIR QUALITY MONITORING AND AWARENESS

lssue

- Types and concentrations of indoor pollutants continuously fluctuate in any indoor or outdoor environment such as:
 - Cooking in home
 - urban rush hours and waste burning

Intent

Monitor indoor air quality issues, as well as inform and educate individuals on the quality of the indoor environment

Summary

This WELL feature requires the ongoing measurement of contaminant data to educate and empower occupants about their environmental quality.

A08 AIR QUALITY MONITORING AND AWARENESS

Solutions

- Installation of air quality sensors and detectors in every building
- real-time monitoring is necessary to promptly fix any deviations in indoor quality metric
- robust and calibrated sensors
- educating occupants about the risks associated with elevated air pollutant exposures

A08 AIR QUALITY MONITORING AND AWARENESS

PART 2: Promote Air Quality Awareness

- Data are presented through:
 - Display Screens (3.6–5.6), one display per 3500 square feet
 - o Website or Phone Applications
- Data presented include:
 - o Concentrations of the parameters measured
 - o Qualitative results of air quality

79

A08 AW <i>A</i>	AIR QUALITY MONITO RENESS	RING AND	
		VERIFICATION METHOD	
	PART 1: Install Indoor Air Monitors		
	Option 1: Sensor requirements	On-site Photographs, Letter of Assurance by Engineer	
	Option 2: Reporting & maintenance	On-going Data Report	
	PART 2: Promote Air Quality Awareness	On-site Photographs, Letter of Assurance by Owner	

A09 POLLUTION INFILTRATION MANAGEMENT

lssue

- Exposure to high levels of coarse and fine particulate matter inadvertently introduced into the space can lead to respiratory irritation.
- Indoor air quality and thermal comfort can be compromised by leaks and gaps that break the building's air barrier.

Intent

Minimize the introduction of pollutants into indoor air through the building envelope and at building entrances

Summary

This WELL feature requires projects to reduce transmission of air and pollutants from outdoors to indoors through the building envelope and entrance

81

A09 POLLUTION INFILTRATION MANAGEMENT

Solution

• The installation of entryway walk-off systems and/or entryway air seals at all main building entrances

A09 POLLUTION INFILTRATION MANAGEMENT

PART 1: Design Healthy Entryways

- Option 1: Building entry design
- Option 2: Building entry maintenance
- Option 3: Outdoor sport areas

PART 2: Perform Envelope Commissioning

 The commissioning process includes envelope commissioning for air infiltration and leakage, which is reflected in the specification and commissioning plan

<section-header><section-header><section-header><section-header><text><text><text><text><text>

409 Man	POLLUTION INFILTRATI	ON	
		VERIFICATION METHOD	
	PART 1: Design Healthy Entryways		
	Option 1: Building entry design	On-site Photographs, Letter of Assurance by Designer	
	Option 2: Building entry maintenance	Policy and/or Operations Schedule	
	Option 3: Outdoor sport areas	On-site Photographs, Letter of Assurance by Designer	
	PART 2: Perform Envelope Commissionin	g Technical Document	1

A10 COMBUSTION MINIMIZATION

lssue

- Combustion-related emissions, mostly from space heating, cooking and nearby transportation, are often a major and overlooked source of indoor air pollution.
- Inefficient heating practices, cooking or other combustion activities produce high levels of indoor air pollution

Intent

Reduce human exposure to combustion-related air pollution from heating and transportation sources.

Summary

This WELL feature requires projects to utilize low-emission combustion products or eliminate combustionbased products entirely.

87

A10 COMBUSTION MINIMIZATION

Solution

 Opting for non-combustion or low-emission combustion products is an important first step toward the reduction of carbon monoxide, nitrogen dioxide, small particles and other combustion by-products in the air

A10 COMBUSTION MINIMIZATION

PART 1: Manage Combustion

- Option 1: Appliance and heater combustion ban
 - Combustion-based fireplaces, stoves, space heaters, ranges and ovens are not used in occupiable space
- Option 2: Low-emission combustion sources
 - Comply with California's South Coast Air Quality Management District (SCAQMD) emission rules for pollution.
 - Are electric.
 - Are supplied by district heating or cooling.
 - Option 3: Engine exhaust reduction
 - Vehicle engine idling for more than 30 seconds is prohibited

A11 SOURCE SEPARATION

lssue

- Chemical storage closets can be a source of harmful vapors, including Volatile Organic Compounds (VOCs) that are linked to cancer, organ and central nervous system damage
- Copy rooms can contribute to the production of ozone that causes lung inflammation chest pain and asthma.

Intent

Preserve indoor air quality and maximize olfactory comfort in occupied spaces through the isolation and proper ventilation of indoor pollution sources and chemical storage areas.

Summary

This WELL feature requires strategies that isolate key sources of odors, germs, pollution or humidity through doors or dedicated exhaust.

91

A11 SOURCE SEPARATION

Solution

- Eliminate individual sources or capture emissions at the source, before they spread to surroundings.
- For air pollution sources that are inevitable, physical separation of such sources combined with direct ventilation exhaust systems is an effective means of protecting individuals.

AATT SOURCE SEPARATION PART 1: Manage Pollution and Exhaust For All Spaces except Dwelling Units: • Are separated from all adjacent regularly occupied spaces with selfclosing doors and/or vestibules (OR) Are negatively pressurized compared with adjacent regularly occupied spaces • Utilize exhaust fans such that the return air is vented outdoors and not recirculated

A11 SOURCE SEPARATION				
		VERIFICATION METHOD		
PART 1:	Manage Pollution and Exhaust			
	For All Spaces except Dwelling Units	Technical Document		
	For Commercial Kitchen Spaces	On-site Photographs, Letter of Assurance by Engineer		

A12 AIR FILTRATION

lssue

- Exposure to particulate matter (PM) is associated
 with many negative health outcomes
- PM can block and inflame airways, causing a range of respiratory-related conditions that can lead to illness or death

Intent

Reduce indoor and outdoor airborne contaminants through air filtration

Summary

This WELL feature requires projects with mechanically ventilated spaces to implement adequate air filtration and document a maintenance protocol for installed filter

97

Solution

- Selection and installation of adequate media filters.
- Filtration of recirculated indoor
- Regular filter maintenance is critical to ensure proper air filtration and the efficiency of the air conditioning system
- Ávoid Overloaded filters

A12 AIR FILTRATION PART 1: Implement Particle Filtration Option 1: Filtration levels Media filters are used in the ventilation system to filter outdoor air supplied to the space Option 2: Filter maintenance Evidence that the filter has been replaced according to the manufacturer's recommendation is submitted annually through the WELL digital platform

WELL O	Implement Particle Filtration Certification: 1 Pt WELL Core: 2 Pt		
For All	Spaces:		
Option	1: Filtration levels		
The fo	lowing requirement is met:		
a. <mark>N</mark> ti	ledia filters are used in the ventilation system to filter nresholds specified in the table below: ^{5,6}	outdoor air supplied to the space, in accordance with	
	Annual Average Outdoor PM2.5Threshold	Minimum Air Filtration Level (PM2.5 removal)	
	23 µg/m ³ or less	≥80% (e.g., MERV 12 or M6)	
	24–39 µg/m³	≥90% (e.g., MERV 14 or F8)	
	40 µg/m³ or greater	≥95% (e.g., MERV 16 or E10)	
Option	2: Filter maintenance		

12 AIR FILTRATION		
		VERIFICATION METHOD
PART Filtro	1: Implement Particle ation	
	Option 1: Filtration levels	On-site Photographs, Letter of Assurance by Engineer
	Option 2: Filter maintenance	On-going Maintenance Report

A13 ENHANCED SUPPLY AIR

lssue

Building materials, furnishings (e.g., carpets and furniture finishes), fabrics, cleaning products, personal care products, adhesives, solvents and air fresheners can all emit VOCs or semi-volatile organic compounds (SVOCs) into the indoor environment

Intent

Mitigate risks from indoor contamination and pollution sources, such as infectious disease particles and volatile organic compounds (VOC)'.

Summary

This WELL feature requires the projects to use supply air that is not recirculated or that is treated with carbon filters, media filters and/or Ultraviolet Germicidal Irradiation (UVGI)

A13 ENHANCED SUPPLY AIR

Solution

- Avoid recirculation of contaminated air
- Use HEPA or near-HEPA filters to help remove virus particles
- UVGI systems Upper portion of the room and air ducts
- In-room air purifiers can be beneficial
- Air filtration systems maintenance

A13 ENHANCED SUPPLY AIR

PART 1: Improve Supply Air

- Option 2: Filter maintenance
 - Evidence that the filter has been replaced according to the manufacturer's recommendation is submitted annually through the WELL digital platform

105

A13	enha	ANCED SUPPLY /	AIR	
			VERIFICATION METHOD	
	PART 1:	Improve Supply Air		
		Option 1: Air supply requirements	On-site Photographs, Letter of Assurance by Engineer	
		Option 2: Filter maintenance	On-going Maintenance Report	

A14 MICROBE AND MOLD CONTROL

lssue

- Mold will grow in places with an acceptable temperature range, a nutrient source and sufficient moisture.
- Air conditioner systems specifically cooling coils
- Mold effects hypersensitivity pneumonitis, allergic rhinitis, bronchitis, lung tumor development, eczema and toxic mold syndrome

Intent

Reduce mold and bacteria growth within the building mechanical system

Summary

This WELL feature requires projects to utilize UVGI systems and/or conduct regular inspections on components of the cooling system to reduce or eliminate growth of microbes and mold

107

Solution

Prevention is better than cure.

 Periodic inspections and maintenance of cooling systems are good preventative methods.

- Regular mold inspections.
- Placement of microbe inactivation techniques, such as Ultraviolet Germicidal Irradiation (UVGI) systems.

A14	MICF	ROBE AND MOLI	d contro	
			VERIFICATION METHOD	
	PART 1: Treatme	Implement Ultraviolet Air ent		
		Option 1: UV system design	On-site Photographs, Letter of Assurance by Engineer	
		Option 2: UV system maintenance and inspection	On-going Maintenance Report	

AIR CONCEPT

Ρ

Our Project - Strategies

- Measurement and Monitoring IAQ through sensors
- Meet the threshold requirements
- Ventilation rate
- Natural Ventilation
- More Outside Air
- Avoid air recirculation
- Airflow direction
- Filtration
- Air Cleaners
- Exhaust Fans
- UVGI
- Operations/Maintenance

IR			
? N	Weight	ID	Part Name
1	Required	A01.1	Meet Thresholds for Particulate Matter
1	Required	A01.2	Meet Thresholds for Organic Gases
	Required	A01.3	Meet Thresholds for Inorganic Gases
1	Required	A01.4	Meet Thresholds for Radon
	Required	A01.5	Monitor Air Parameters
/	Required	A02.1	Prohibit Indoor Smoking
1	Required	A02.2	Prohibit Outdoor Smoking
	Required	A03.1	Ensure Adequate Ventilation
	Required	A04.1	Mitigate Construction Pollution
	2 points	A05.1	Meet Enhanced Thresholds for Particulate Matter
	1 point	A05.2	Meet Enhanced Thresholds for Organic Gases
	1 point	A05.3	Meet Enhanced Thresholds for Inorganic Gases
	2 points	A06.1	Increase Outdoor Air Supply (30% 1pt)
	1 point	A06.2	Improve Ventilation Effectiveness
	1 point	A07.1	Provide Operable Windows
	1 point	A07.2	Provide Operable Windows
	1 point	A08.1	Install Indoor Air Monitors
	1 point	A08.2	Promote Air Quality Awareness
	1 point	A09.1	Design Healthy Entryways
	1 point	A09.2	Perform Envelope Commissioning
	1 point	A10.1	Manage Combustion
	1 point	A11.1	Manage Pollution and Exhaust
	1 point	A12.1	Implement Particle Filtration
	1 point	A13.1	Improve Supply Air
	1 point	A14.1	Implement Ultraviolet Air Treatment

		GBRI Community
IR	0 POINTS	Contor SCOPE CAPD
Y ? N Weight ID Part N	lame	
Required A01.1 Meet	Thresholds for Particulate Matter	
Required AU1.2 Meet	Thresholds for Organic Gases	
Required AU1.3 Meet	Thresholds for Inorganic Gases	
Required A01.4 Meet	Thresholds for Radon	
Required A01.5 Monr	tor Air Parameters	
Required AU2.1 Prohi	Ibit Indoor Smoking	
Required A02.2 Prohi	ibit Outdoor Smoking	
Required A03.1 Ensu	Ire Adequate Ventilation	
Required A04.1 Mittig	ate Construction Pollution	
2 points AU5.1 Meet	Enhanced Thresholds for Particulate Matter	
1 point AU5.2 Meet	Enhanced Thresholds for Organic Gases	
1 point AU5.3 Meet	Enhanced Thresholds for Inorganic Gases	
2 points AU6.1 Incre	ase Outdoor Air Supply (30% 1pt)	
1 point AU6.2 Impro	ove Ventilation Effectiveness	
1 point A07.1 Provi	de Operable Windows	
1 point AU7.2 Provi	de Operable Windows	
1 point A08.1 Insta	II Indoor Air Monitors	
1 point AU8.2 Prom	note Air Quality Awareness	
1 point AU9.1 Desig	gn Healthy Entryways	
1 point AU9.2 Perfo	orm Envelope Commissioning	
1 point A10.1 Mana	age Compustion	
1 point A11.1 Mana	age Pollution and Exhaust	
i point A12.1 Imple	ement Particle Filtration	
i point A13.1 Impro	ove Supply Air	
i point A14.1 Imple	ement Ultraviolet Air Treatment	

Knowledge Domain 1: Air

Knowledge of:

- 1. Types, sources and acceptable thresholds of indoor air contaminants.
- 2. Short- and long-term effects of indoor air quality on human health, well-being and productivity.
- Design, construction and operational processes that affect air quality throughout the lifecycle of buildings.
- 4. Strategies for addressing and monitoring indoor air quality.

Skills In:

- Analyzing the air quality results from on-site monitoring and laboratory-based tests to inform decision-making.
- Recommending strategies to prohibit smoking, minimizing occupant exposure to secondhand smoke and reducing smoke pollution.
- Recommending strategies for mechanical and natural ventilation to dilute human- and product-generated air pollutants.
- 4. Recommending strategies to mitigate the introduction of construction related pollutants into indoor air and remediating construction-related indoor air contamination.
- Recommending strategies that limit sources of air pollution such as combustion, and isolating key sources of odors, germs, pollution or humidity.
- 6. Recommending strategies to mitigate risks from indoor contamination and pollution sources.